
Hands Tracker and Classifier
as a solution for detecting autistic behavior

Guided by:

Professor Hagit Hel-Or

Students:

Julian Mour

Fadi Khateeb

University of Haifa – Etgar

2020-2021

Problem stating

One of the significant signs that can point to an autistic behavior

in a certain person is their body language, specifically their

hands movements.

Tracking a patient’s hands behavior by eye isn’t an easy task to

do, as there are a lot of states were the hands behavior needs to

be recorded, whether it’s in a static state (hands on legs, hands

together…) or in a dynamic state (motion).

Using Computer Vision and Machine Learning, we can track a

patient’s hands behavior from a video and classify it to different

states during the whole video.

… …

Dynamic states

analysis

Static states

analysis

HANDS

TOGETHER [1]

NO MOTION

[0]

Project Definition

We used in our project two trackers we came across from an

open-source code from Mediapipe, which offers cross-platform,

customizable ML solutions for live and streaming media.

Mediapipe was developed by Google.

We used Mediapipe-Hands for hands detecting and tracking and

Mediapipe-Pose for the body’s pose detecting and tracking.

Our first mission was to be able to classify between two simple

hand states. As mentioned before, Machine Learning was

involved in our project; we developed a classifier that could

classify a detected hand from a single frame to open or closed.

Our second mission was to be able to detect and classify static

states of the hands for each frame. Using the hands and pose

trackers from Mediapipe and the open-closed classifier we

developed earlier, we were able to classify a frame from the

input video to these static classes:

1. HANDS TOGETHER

2. HANDS ON LEGS

3. HANDS BETWEEN LEGS

4. NAILS PICKING (TWO HANDS)

5. HAND ON HAND

6. NAILS PICKING (ONE HAND)

If no state from the above was detected, then the class chosen

for this frame is:

0. <NO STATIC CLASS DETECTED>

It’s important to mention that in case of a motion of at least one

hand in a certain frame, classes 1-5 cannot be given to this

frame. In case of a motion of both hands, class 6 also cannot be

given to this frame and the chosen class is 0.

Our second mission was to be able to detect and classify

dynamic states of the hands for each frame. There are only two

possible states:

1. MOTION

2. CYCLIC MOTION (repetitive motion)

Or if there is no motion; class assigned is 0 for the certain frame.

Class 1 is only assigned if there is motion that doesn’t have a

cyclic pattern. Class 2 is assigned when there is motion and a

cyclic pattern of it was detected.

To conclude: The user passes the path of an input video to the

code or run it in real time. The user also has the option to choose

only one side of the video to be tracked: left or right (more about

user’s instructions are at the end of the report and in file

README.txt attached with code). Each frame of the input

video will be classified to a static class (0-6) and a dynamic

class (0-2). These results will be written into an Excel file at the

end of the runtime. In addition, an output video will be built

with the classes displayed for each frame, and the hands and

pose trackers landmarks drawn on each frame.

Implementation

About Mediapipe trackers:

• MediaPipe offers cross-platform, customizable ML

solutions for live and streaming media.

• Was developed by Google

1. Mediapipe Hands:

MediaPipe Hands is a high-fidelity hand and finger

tracking solution. It employs machine learning (ML) to

infer 21 3D landmarks of a hand from just a single frame.

More information about the tracker can be found here:

https://google.github.io/mediapipe/solutions/hands.html

Tracker output:

(𝒙𝟏𝟔 , 𝒚𝟏𝟔 , 𝒛𝟏𝟔)

https://google.github.io/mediapipe/solutions/hands.html

2. Mediapipe Pose:

MediaPipe Pose is a ML solution for high-fidelity body

pose tracking, inferring 33 3D landmarks on the whole

body from RGB video frames.

More information about the tracker can be found here:

https://google.github.io/mediapipe/solutions/pose.html

(𝒙𝟏𝟏 , 𝒚𝟏𝟏 , 𝒛𝟏𝟏)

https://google.github.io/mediapipe/solutions/pose.html

Tracker output:

The open-closed classifier:

Our mission was to build a simple classifier that can classify a

detected hand to closed or open. We filmed a couple of hands

videos and applied the Medipipe hands tracker on them and used

the output data of each frame (the landmarks of a detected hand)

in our learning.

These are the learning details:

• The data: 21x21 matrix (distances) of the normalized

distances between the landmarks of a single hand.

The normalization is done to avoid distance from camera

differences. We chose the 0-1 normalization factor because

the distance between the 0 and 1 landmark is nearly

constant.

• Model: K-means with 2 clusters (unsupervised).

About k-means in general:

“k-means clustering is a method of vector quantization,

originally from signal processing, that aims

to partition n observations into k clusters in which each

observation belongs to the cluster with the

nearest mean (cluster centers or cluster centroid), serving as

a prototype of the cluster.”

Normalization factor

dist =

distances[3][8] =

distances[8][3] =

𝒅𝒊𝒔𝒕

𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓

distances[i][i] =

𝟎

https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Centroid

In our case, K=2:

More information about K-means can be found here:

https://en.wikipedia.org/wiki/K-means_clustering

The classifier’s results:

Cluster #1

(Open hand)

Cluster #2

(Closed hand)

https://en.wikipedia.org/wiki/K-means_clustering

The static states detector:

Each batch of 30 frames is passed to a classifier that will give all

30 frames a certain static class from these classes:

0. <NO STATIC CLASS DETECTED>

1. HANDS TOGETHER

2. HANDS ON LEGS

3. HANDS BETWEEN LEGS

4. NAILS PICKING (TWO HANDS)

5. HAND ON HAND

6. NAILS PICKING (ONE HAND)

First, a couple of Boolean variables are calculated using the

Mediapipe Hands tracker and the Mediapipe Pose tracker, as

well as the open-closed classifier we developed earlier:

• Together = if the distance between the palms is beyond a
certain threshold (0.4) and all hands are closed (an
undetected hand is considered closed).

• Close to legs = if the right leg distance from the right hand
and the left leg distance from the left hand are beyond a
certain threshold (1.7).

• Very close to legs = if the right leg distance from the right
hand and the left leg distance from the left hand are beyond
a certain threshold (1.3).

• Nails picking 2 hands = if the distance of each finger of the
left-hand from the corresponding finger of the right-hand is
beyond or equal to a certain threshold (0.6).

• Nails picking 1 hand = if the distance of the thumb from
the index finger is beyond a threshold (0.9) and the hand is

open. This must apply for at least one of the detected
hands.

• Hand on hand = if the average of the distances of the three
palm landmarks on one hand from the corresponding
landmarks on the other hand is beyond a certain average
(0.1).

After calculating the variables above, we pass each frame from
the batch of 30 frames to a decision tree that will give it a
specific static class (0-6):

At last, given 30 classifications for the 30 frames, we check if
there are enough frames (20% of the batch) that vote for a
certain static class that isn’t 0 (if there is more than one, then the
one with the higher votes is chosen). If so, this class is given to
the whole 30 frames batch. Otherwise, the class 0 (<NO STATIC
CLASS DETECTED>) is given to the whole 30 frames batch.

The dynamic states detector:

At first, given the data of the Mediapipe Hands tracker for

each frame, we take each 90 frames batch and prepare it

for dynamic classification:

The smoothing part is done to

avoid tracking errors.

After getting the smoothened (x,y,z) series, we need to check if

there is any motion in this series of frames:

Variance is a measure of dispersion, meaning it is a measure of

how far a set of numbers is spread out from their average value.

Therefore, a very low variance of our series will be given when

all landmarks in the different frames are around the same spot,

when there is no significant motion. A very high variance will

https://en.wikipedia.org/wiki/Statistical_dispersion

be given when all landmarks in the different frames are very far

from each other. This will happen when the Mediapipe Hands

tracker fail to detect the real hand in the frame but detect a false

hand (on a background object for an instance).

If our variance is somewhere in between, then we can say that

there is a significant motion in these 90 frames. We now need to

check if this motion is cyclic:

Basically, we are checking if the Fourier values contain a

significant peak. If so, this means that the data (the hand route)

is most likely repetitive along most frames, which could indicate

a cyclic pattern in this peak frequency.

For more explanation and an example about analyzing cyclic data with

FFT, you can check the link below:

https://www.mathworks.com/help/matlab/math/using-fft.html

FFT Data

https://www.mathworks.com/help/matlab/math/using-fft.html

Instructions

1) General instructions and pre-running instructions:

Please first follow general instructions to install MediaPipe

Python package:

MediaPipe offers ready-to-use yet customizable Python

solutions as a prebuilt Python package.

MediaPipe Python package is available on PyPI for Linux,

macOS and Windows.

You can, for instance, activate a Python virtual environment:

$ python3 -m venv mp_env && source mp_env/bin/activate

Install MediaPipe Python package and start Python interpreter:

(mp_env)$ pip install mediapipe
(mp_env)$ python3

For programming uses:

In Python interpreter, import the package and start using one of

the solutions:

>> import mediapipe as mp

>> hands = mp.solutions.hands

>> pose = mp.solutions.pose

...

Tip: Use command deactivate to later exit the Python virtual

environment.

for more information about MediaPipe's general instructions and ready-

to-use python solutions, visit:

https://google.github.io/mediapipe/getting_started/python.html

for more information about MediaPipe in general, visit:

https://google.github.io/mediapipe/

2) How to run:

Run line in command terminal:

$ python testing.py <SIDE> <INPUT_VIDEO>(optional)

<OUTPUT_VIDEO>

https://google.github.io/mediapipe/getting_started/python.html
https://google.github.io/mediapipe/

<SIDE>:

-1 = both sides tracking (whole frame size)

0 = left side tracking only

1 = right side tracking only

<INPUT_VIDEO>(optional): Name of input video (with

extension).

Input video must be in the same directory as the code files.

If this argument isn't passed, then real time tracking will be

applied.

<OUTPUT_VIDEO>: Name of output video (without

extension).

Output video will be created in the same directory as the code

files.

an example for a line to run:

$ python testing.py -1 interview2.mp4 interview2_out

