
Hands Tracker and Classifier 
as a solution for detecting autistic behavior 

 

 

Guided by:  

Professor Hagit Hel-Or 

 

Students: 

Julian Mour 

Fadi Khateeb 

 

 

 

 

 

 

 

 

University of Haifa – Etgar 

2020-2021 



Problem stating 

 

One of the significant signs that can point to an autistic behavior 

in a certain person is their body language, specifically their 

hands movements. 

Tracking a patient’s hands behavior by eye isn’t an easy task to 

do, as there are a lot of states were the hands behavior needs to 

be recorded, whether it’s in a static state (hands on legs, hands 

together…) or in a dynamic state (motion). 

Using Computer Vision and Machine Learning, we can track a 

patient’s hands behavior from a video and classify it to different 

states during the whole video. 
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Project Definition 

 

We used in our project two trackers we came across from an 

open-source code from Mediapipe, which offers cross-platform, 

customizable ML solutions for live and streaming media. 

Mediapipe was developed by Google. 

We used Mediapipe-Hands for hands detecting and tracking and 

Mediapipe-Pose for the body’s pose detecting and tracking. 

 

Our first mission was to be able to classify between two simple 

hand states. As mentioned before, Machine Learning was 

involved in our project; we developed a classifier that could 

classify a detected hand from a single frame to open or closed. 

 

 

 

 

 

Our second mission was to be able to detect and classify static 

states of the hands for each frame. Using the hands and pose 

trackers from Mediapipe and the open-closed classifier we 

developed earlier, we were able to classify a frame from the 

input video to these static classes: 

 



1. HANDS TOGETHER 

2. HANDS ON LEGS 

3. HANDS BETWEEN LEGS 

4. NAILS PICKING (TWO HANDS) 

5. HAND ON HAND 

6. NAILS PICKING (ONE HAND) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



If no state from the above was detected, then the class chosen 

for this frame is: 

0. <NO STATIC CLASS DETECTED> 

 

 

 

 

 

 

It’s important to mention that in case of a motion of at least one 

hand in a certain frame, classes 1-5 cannot be given to this 

frame. In case of a motion of both hands, class 6 also cannot be 

given to this frame and the chosen class is 0. 

 

Our second mission was to be able to detect and classify 

dynamic states of the hands for each frame. There are only two 

possible states:  

1. MOTION 

2. CYCLIC MOTION (repetitive motion) 

 

Or if there is no motion; class assigned is 0 for the certain frame. 

Class 1 is only assigned if there is motion that doesn’t have a 

cyclic pattern. Class 2 is assigned when there is motion and a 

cyclic pattern of it was detected. 



 

 

 

 

 

 

To conclude: The user passes the path of an input video to the 

code or run it in real time. The user also has the option to choose 

only one side of the video to be tracked: left or right (more about 

user’s instructions are at the end of the report and in file 

README.txt attached with code). Each frame of the input 

video will be classified to a static class (0-6) and a dynamic 

class (0-2). These results will be written into an Excel file at the 

end of the runtime. In addition, an output video will be built 

with the classes displayed for each frame, and the hands and 

pose trackers landmarks drawn on each frame. 

 

 

 

 

 

 

 



Implementation 

 

About Mediapipe trackers: 

• MediaPipe offers cross-platform, customizable ML 

solutions for live and streaming media. 

• Was developed by Google 

 

 

1. Mediapipe Hands: 

 

MediaPipe Hands is a high-fidelity hand and finger 

tracking solution. It employs machine learning (ML) to 

infer 21 3D landmarks of a hand from just a single frame. 

 

 



 

 
More information about the tracker can be found here: 

https://google.github.io/mediapipe/solutions/hands.html 

 

Tracker output: 

 

(𝒙𝟏𝟔 , 𝒚𝟏𝟔 , 𝒛𝟏𝟔 ) 

https://google.github.io/mediapipe/solutions/hands.html


2. Mediapipe Pose: 

 

MediaPipe Pose is a ML solution for high-fidelity body 

pose tracking, inferring 33 3D landmarks on the whole 

body from RGB video frames. 

 

 
 

More information about the tracker can be found here: 

https://google.github.io/mediapipe/solutions/pose.html 

 

 

 

 

(𝒙𝟏𝟏 , 𝒚𝟏𝟏 , 𝒛𝟏𝟏 ) 

https://google.github.io/mediapipe/solutions/pose.html


Tracker output: 

 

 

 

The open-closed classifier: 

Our mission was to build a simple classifier that can classify a 

detected hand to closed or open. We filmed a couple of hands 

videos and applied the Medipipe hands tracker on them and used 

the output data of each frame (the landmarks of a detected hand) 

in our learning. 

These are the learning details: 

• The data: 21x21 matrix (distances) of the normalized 

distances between the landmarks of a single hand. 

 



 

 

 

 

 

 

 

 

 

The normalization is done to avoid distance from camera 

differences. We chose the 0-1 normalization factor because 

the distance between the 0 and 1 landmark is nearly 

constant. 

 

• Model: K-means with 2 clusters (unsupervised). 

About k-means in general: 

“k-means clustering is a method of vector quantization, 

originally from signal processing, that aims 

to partition n observations into k clusters in which each 

observation belongs to the cluster with the 

nearest mean (cluster centers or cluster centroid), serving as 

a prototype of the cluster.” 

 

Normalization factor 

dist = 

distances[3][8] = 

distances[8][3] = 

𝒅𝒊𝒔𝒕

𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓
 

distances[i][i] =  

𝟎 

https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Centroid


In our case, K=2: 

 

 

 

 

 

 

 

 

More information about K-means can be found here: 

https://en.wikipedia.org/wiki/K-means_clustering 

 

The classifier’s results: 

 

Cluster #1 

(Open hand) 

Cluster #2 

(Closed hand) 

https://en.wikipedia.org/wiki/K-means_clustering


The static states detector: 

Each batch of 30 frames is passed to a classifier that will give all 

30 frames a certain static class from these classes: 

0. <NO STATIC CLASS DETECTED> 

1. HANDS TOGETHER 

2. HANDS ON LEGS 

3. HANDS BETWEEN LEGS 

4. NAILS PICKING (TWO HANDS) 

5. HAND ON HAND 

6. NAILS PICKING (ONE HAND) 

 

First, a couple of Boolean variables are calculated using the 

Mediapipe Hands tracker and the Mediapipe Pose tracker, as 

well as the open-closed classifier we developed earlier: 

 

• Together = if the distance between the palms is beyond a 
certain threshold (0.4) and all hands are closed (an 
undetected hand is considered closed). 

• Close to legs = if the right leg distance from the right hand 
and the left leg distance from the left hand are beyond a 
certain threshold (1.7). 

• Very close to legs = if the right leg distance from the right 
hand and the left leg distance from the left hand are beyond 
a certain threshold (1.3). 

• Nails picking 2 hands = if the distance of each finger of the 
left-hand from the corresponding finger of the right-hand is 
beyond or equal to a certain threshold (0.6). 

• Nails picking 1 hand = if the distance of the thumb from 
the index finger is beyond a threshold (0.9) and the hand is 



open. This must apply for at least one of the detected 
hands. 

• Hand on hand = if the average of the distances of the three 
palm landmarks on one hand from the corresponding 
landmarks on the other hand is beyond a certain average 
(0.1). 

 

 

After calculating the variables above, we pass each frame from 
the batch of 30 frames to a decision tree that will give it a 
specific static class (0-6): 

 

 

 



At last, given 30 classifications for the 30 frames, we check if 
there are enough frames (20% of the batch) that vote for a 
certain static class that isn’t 0 (if there is more than one, then the 
one with the higher votes is chosen). If so, this class is given to 
the whole 30 frames batch. Otherwise, the class 0 (<NO STATIC 
CLASS DETECTED>) is given to the whole 30 frames batch. 

 

 

The dynamic states detector: 

At first, given the data of the Mediapipe Hands tracker for 

each frame, we take each 90 frames batch and prepare it 

for dynamic classification:  

  

 



The smoothing part is done to 

avoid tracking errors. 

 

 

 

 

 

After getting the smoothened (x,y,z) series, we need to check if 

there is any motion in this series of frames: 

 

 

Variance is a measure of dispersion, meaning it is a measure of 

how far a set of numbers is spread out from their average value. 

Therefore, a very low variance of our series will be given when 

all landmarks in the different frames are around the same spot, 

when there is no significant motion. A very high variance will 

https://en.wikipedia.org/wiki/Statistical_dispersion


be given when all landmarks in the different frames are very far 

from each other. This will happen when the Mediapipe Hands 

tracker fail to detect the real hand in the frame but detect a false 

hand (on a background object for an instance). 

 

If our variance is somewhere in between, then we can say that 

there is a significant motion in these 90 frames. We now need to 

check if this motion is cyclic: 

 

 

Basically, we are checking if the Fourier values contain a 

significant peak. If so, this means that the data (the hand route) 

is most likely repetitive along most frames, which could indicate 

a cyclic pattern in this peak frequency. 

 



For more explanation and an example about analyzing cyclic data with 

FFT, you can check the link below: 

 

 

 

 

 

 

https://www.mathworks.com/help/matlab/math/using-fft.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

FFT Data 

https://www.mathworks.com/help/matlab/math/using-fft.html


Instructions 

 

1) General instructions and pre-running instructions: 

 

Please first follow general instructions to install MediaPipe 

Python package: 

MediaPipe offers ready-to-use yet customizable Python 

solutions as a prebuilt Python package.  

MediaPipe Python package is available on PyPI for Linux, 

macOS and Windows. 

You can, for instance, activate a Python virtual environment: 

 

$ python3 -m venv mp_env && source mp_env/bin/activate 

 

 

Install MediaPipe Python package and start Python interpreter: 

 

(mp_env)$ pip install mediapipe 
(mp_env)$ python3 

 

For programming uses: 

In Python interpreter, import the package and start using one of 

the solutions: 



>> import mediapipe as mp 

>> hands = mp.solutions.hands 

>> pose = mp.solutions.pose 

... 

 

Tip: Use command deactivate to later exit the Python virtual 

environment. 

 

 

for more information about MediaPipe's general instructions and ready-

to-use python solutions, visit: 

https://google.github.io/mediapipe/getting_started/python.html 

for more information about MediaPipe in general, visit: 

https://google.github.io/mediapipe/ 

 

 

2) How to run: 

 

Run line in command terminal: 

$ python testing.py <SIDE> <INPUT_VIDEO>(optional) 

<OUTPUT_VIDEO> 

 

 

https://google.github.io/mediapipe/getting_started/python.html
https://google.github.io/mediapipe/


<SIDE>:  

-1 = both sides tracking (whole frame size) 

0 = left side tracking only 

1 = right side tracking only 

 

<INPUT_VIDEO>(optional): Name of input video (with 

extension).  

Input video must be in the same directory as the code files. 

If this argument isn't passed, then real time tracking will be 

applied. 

 

<OUTPUT_VIDEO>: Name of output video (without 

extension).  

Output video will be created in the same directory as the code 

files. 

 

 

an example for a line to run: 

$ python testing.py -1 interview2.mp4 interview2_out 


